
LA-UR 96-1375

Approved for public release; distribution is unlimited

Approximation Algorithms for Maximum Two-
dimensional Pattern Matching

Authors: S.R. Arikati, A. Dessmark, A. Lingas, M.V. Marathe

August 1997

LOS ALAMOS
NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is
operated by the University of California for the U.S. Department of Energy under
contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that
the U.S. Government retains a non-exclusive, royalty-free license to publish or
reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher
identify this article as work performed under the auspices of the U.S. Department of
Energy. The Los Alamos National Laboratory strongly supports academic freedom and
a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse this viewpoint of a publication or guarantee its technical correctness.

Approximation Algorithms for Maximum Two-dimensional Pattern

Matching

Srinivasa R. Arikati� Anders Dessmarky Andrzej Lingasz

Madhav V. Marathe z

August 15, 1997

Abstract

We introduce the following optimization version of the classical pattern matching

problem (referred to as themaximum pattern matching problem). Given a two-dimensional

rectangular text and a 2-dimensional rectangular pattern �nd the maximum number of

non-overlapping occurrences of the the pattern in the text.

Unlike the classical 2-dimensional pattern matching problem, the maximum 2-dimensional

pattern matching problem is NP-complete. We devise polynomial time approximation

algorithms and approximation schemes for this problem. We also brie
y discuss how the

approximation algorithms can be extended to include a number of other variants of the

problem.

�Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152. Email:

arikati@cadence.com. Part of the work was done while the author was visiting Department of Computer

Science, Lund University, Sweden; and and Max-Planck-Institut fuer Informatik, Saarbruecken, Germany.
yDepartment of Computer Science, Lund University, Box 117, S-221 00 Lund, Sweden. Email

fAnders.Dessmark, Andrzej.Lingasg@dna.lth.se. The work is supported by TFR under Contract 93-159.
zLos Alamos National Laboratory, P.O. Box 1663, MS B265, Los Alamos, NM 87545. Email:

madhav@c3.lanl.gov. Research supported by the Department of Energy under Contract W-7405-ENG-36.
zA preliminary version of the the paper appeared in the Proc. Combinatorial Pattern Matching LNCS

1075, Springer Verlag, pp. 348-360 (1996).

0

1 Introduction

Given a pattern string PAT and a text T over a �nite alphabet �, the classical pattern

matching problem is to �nd all occurrences of PAT in T . In the recent years there has

been growing interest in �nding e�cient algorithms for multi-dimensional pattern matching

problems (see [2, 21, 10, 1, 5, 24] and the references therein.). Consider the following opti-

mization variant of the classical pattern matching problem: Given a text T and a pattern

PAT over a �nite alphabet �, �nd the maximum number of non-overlapping occurrences of

the pattern PAT in T . We call this problem the maximum pattern matching problem

and use MPMd to denote the maximum d-dimensional pattern matching problem. Max-

imum pattern matching problem arises naturally in the areas of automated digital image

processing. For example, researchers at the Los Alamos National Laboratory are currently

developing CANDID, the Comparison Algorithm for Navigating Digital Image Databases,

which facilitates a query-by-example approach to image retrieval [8, 22, 23]. A user poses

queries such as, \Show me all or the the maximum number of non-overlapping images in the

database that contain textures similar to those in this example image". Such queries are

useful in a variety of settings such as analysis of the images sent by remote sensing satellites

and medical diagnostics (See [8, 22, 23] and the references therein). For other applications

of two-dimensional matching and a general survey, we refer the reader to [14, 21].

2 Summary of Results

Here, for the �rst time in the literature, we study the problem MPMd and several of its

variants. In the one dimensional case, (i.e the problem MPM1) the maximum solution can

be easily found by successively taking the leftmost non-overlapping (with those already se-

lected) location, if all possible locations are precomputed. In the case of tree matching the

1

intersection graph corresponding to the set of matching locations is chordal [15]. Therefore,

the maximum number can be found in time linear in the size of the graph and the size of the

text, by combining the results in [16] and [29]. For d � 2, MPMd becomes harder to solve

[9]. Speci�cally, we observe that a known NP-completeness result on planar geometric pack-

ing [13] implies the NP-completeness of the problem of maximum two-dimensional pattern

matching (MPM2). In Section 4, we give a simple and e�cient approximation algorithm

with performance guarantee of 2 for the problem MPM2. If the set of the so-called periods

of the pattern is appropriately restricted, our simple approach yields maximum solutions.

In Section 5, we present our �rst involved approximation algorithm for MPM2, based on

good separation properties of the intersection graph of the pattern locations. Our proof

of these properties might be of independent interest. The separator-based approximation

algorithm yields a solution of relative error O(1=
p
log logn) for constant size patterns, and

runs in O(n logn) time, on an input of size n. In Section 6, we present our second approx-

imation algorithm for MPM2 based on the shifting strategy introduced by Baker [4] and

by Hochbaum and Maass [19, 20]. Speci�cally, when patterns are of �xed size, we obtain

fast parallel approximation schemes for MPM2. In the last Section we brie
y describe the

various extensions of our results for MPM2.

3 Preliminaries

Following [1], the two-dimensional exact pattern matching is de�ned as follows.

Input: A text matrix T [1; : : : ; n][1; : : : ; n0], and a pattern matrix PAT [1; : : : ;m] [1; : : : ;m0]

over a �nite alphabet �.

Output: The set L of all location [i; j] in T such that T [i+ k� 1; j + l� 1] = PAT [k; l]; 1 �

k � m and 1 � l � m0.

For two-dimensional pattern matching, since there are known linear-time algorithms that �nd

2

all possible locations of PAT in T [2, 3, 6], we assume that the set L of all such locations is

known. Following standard convention, the size of a pattern PAT is the number of characters

in PAT . Thus the size of a m �m0 pattern is O(mm0) and the size of the n � n0 text is

O(nn0). Finally, we assume a RAM model of computation with uniform cost criterion.

We shall adhere to a standard notation for undirected graphs [18]. An independent set

in a graph G = (V;E) is a subset S of vertices such that no two vertices of S are adjacent

in G. S is maximal if every vertex in V � S is adjacent to some vertex in S. S is a

maximum independent set if it has the maximum size among all independent sets of G. An

�-approximate independent set is an independent set of size at least (1=�) times the maximum

independent size.

Recall that an approximation algorithm for a maximization problem � has a performance

guarantee of �, if for every instance I of �, the solution value returned by the approximation

algorithm is at least 1
� of an optimal solution for I.

Let a < 1; f : N ! N; and d > 0: A class F of graphs has an (a; f; d)-separator if for

each n-vertex G 2 F either n � d or there is a a subset S of the set of vertices of G whose

removal disconnects G into two subgraphs G1 and G2 in F such that:

1. Both G1 and G2 have at most an vertices each;

2. S has at most f(n) vertices;

We sometimes identify the notion of an (a; f; d)-separator with the separation subsets

S: Consequently, we say that an (a; f; d)-separator is constructible in time t if such S are

computable in time t.

Given T , PAT and the set L, we say that two locations [i1; j1] and [i2; j2] in L overlap, if

and only if ji1 � i2j < m and jj1 � j2j < m0. Let GL = (L;EL) denote the intersection graph

corresponding to L; i.e., for l1; l2 2 L; (l1; l2) is an edge of GL if and only if the locations l1

3

and l2 of PAT overlap in T . The set L can also be thought of as de�ning a set of intersecting

isothetic rectangles of size m � m0 as follows. The isothetic equisized rectangles R are in

one-to-one correspondence with the set of locations in L. A rectangle r 2 R corresponding

to a location (i; j) 2 L is placed with its lower left lower corner at (i; j). It is clear that

two rectangles in R intersect if and only if the corresponding locations overlap. Now, we can

apply the well known methods for reporting intersections of isothetic rectangles in order to

construct GL: By Theorem 8.9 in [27], we have the following lemma.

Lemma 3.1 GL can be constructed from L in O(jLj log jLj+ jELj) time.

It can be easily veri�ed that the problem MPM2 reduces to �nding a maximum inde-

pendent set in GL. Note that in general GL corresponds to the intersection graph of eq-

uisized isothetic rectangles. Moreover, �-approximate independent sets in GL are precisely

�-approximate solutions to MPM2.

The NP-hardness of MPM2 immediately follows from the NP-hardness of the planar

geometric packing problem, given in [13]. An instance of this problem consists of a set of

m isothetic squares laid out in the plane. The question is to decide if it is possible to �nd

k isothetic, pairwise disjoint locations of a given square (of integer side length) within an

isothetic polygon with holes on an integer grid. To obtain the NP-hardness of MPM2 we

simply set PAT to the square �lled with 0's, and model the input polygon P by setting

the entries of T corresponding to the grid points inside P to 0 and the remaining entries to

1: Importantly, the area of the integer grid containing the instance of the packing problem,

modeling an instance of 3SAT in [13], is polynomial in the size of the instance of 3SAT .

Thus MPM2 is NP-hard. The graph representation GL yields the membership of MPM2 in

NP.

Theorem 3.2 The maximum two-dimensional pattern matching problem is NP-complete.

4

4 Simple Approximations

Consider a maximum set S of non-overlapping locations of PAT in T . By a simple packing

argument, it follows that any location in a maximal set of non-overlapping occurrences of

PAT in T can overlap with at most four locations in S. Hence, the maximal set contains

at least jSj=4 elements. The discussion also implies that the intersection graph GL is 5-claw

free graph. (A d-claw is the graph K1;d, i.e., a star with d independent neighbors. A graph is

a d-claw free graph if it has no induced d-claw.) For the maximum independent set problem

for d-claw free graphs, Halld�orsson [17] gives a local improvement heuristic with performance

guarantee of d�1
2 +�, for any � > 0. Since the intersection graphs associated with the problem

MPM2 are 5-claw free the result in [17] can be used to obtain an algorithm for MPM2

with asymptotic performance guarantee close to 2. We can obtain an alternative heuristic

which is more e�cient and has a performance guarantee 2 by observing the following. An

extreme location of PAT in T in one of the four directions can overlap with at most two

other independent locations. Let ML be a maximal independent set in GL constructed by

repeatedly taking the vertex corresponding to the leftmost location of PAT and removing

all its neighbors in the current graph. Then, we have the following lemma.

Lemma 4.1 The maximal independent set ML yields a 2-approximate solution to MPM2.

Theorem 4.2 A 2-approximate solution to MPM2 can be computed in O(jnn0j+ jLj log jLj+

jELj) time.

Proof : By Lemma 4.1, it su�ces to construct the setML within the stated time. To achieve

this, we build the graph GL and sort L by X-coordinate. The operation of extracting the

leftmost location takes O(1) time. The operation of deleting the overlapping location takes

time proportional to the degree of corresponding vertex in GL: Finally, recall that L can be

constructed in O(nn0) time [9], and GL in O(jLj log jLj+ jELj) time by Lemma 3.1.

5

4.1 Periods of Pattern

A period of the m�m0 pattern array PAT is a non-null vector (r; s) such that �m < r < m,

0 � s < m0, and PAT [i; j] = PAT [r + i; s+ j] whenever both sides are within PAT . There

are two classes of periods depending on whether r is negative or not.

If the pattern array has periods of only one class, a simple algorithm for optimally solving

MPM2 can be designed based on the following lemma.

Lemma 4.3 If PAT has only nonnegative (negative) periods, no two locations corresponding

to two vertices in the same connected component in GL are such that one lies to the right and

over (respectively, under) the other.

Proof : The proof is by contradiction. Let u; v respectively denote the vertices of GL cor-

responding to two locations contradicting the lemma, e.g., in the nonnegative case. Clearly,

they cannot be neighbors in G: Consider the shortest path P in GL connecting u and v:

Let l be the �rst location corresponding to a vertex in P such that the locations l1 and l2

corresponding to the neighbors in P are both to the right or both to the left of l. Note that

both l1 and l2 have to cover the left-upper or the right-lower corner of l. Hence, there is

an edge connecting the two neighboring vertices in G. We obtain a contradiction with the

optimality of P: The proof in the negative case is symmetrical.

By Lemma 4.3, we can order the vertices in each connected component of GL according to

their relative position in T , from the upper left or lower left corner depending on the class of

periods. Now we can re�ne the 2-approximation algorithm given in the proof of Theorem 4.2

by giving preference to the vertex corresponding to the uppermost or the lowermost location

respectively in a sweep from left to right. In result, we obtain the following theorem.

Theorem 4.4 If PAT has only nonnegative periods (or, only negative periods), then MPM2

can be solved in time O(jELj+ nn0 + jLj log jLj):

6

It follows from Lemma 4.3 that GL is a unit interval graph. Hence, GL is in particular a

chordal graph and a maximum independent set in GL can be found in time linear in the size

of GL by [29] and [16]. This yields an alternative proof of Theorem 4.4.

5 Separator-based Approximation

In case PAT is of small size compared with T , e.g., constant size, we show below that an

e�cient approximation toMPM2 exists and the approximation can be made arbitrarily close

to the optimal solution. Our approach is inspired by the Lipton-Tarjan's method [25] of com-

puting approximate independent sets in planar graphs. >From the sophisticated randomized

and deterministic methods for constructing separators for geometric graphs given in [26]

and [11] respectively, it follows that GL has a good separator. Independently of [11, 26],

we show a that an equally good separator for GL is simply induced by m � 1 consecutive

columns and/or m0� 1 consecutive rows in T: This very simple separator construction is the

basis of our sophisticated approximation algorithm for MPM2:

Lemma 5.1 The class of graphsGL has an (5=6; O(
p
mm0jLj); O(mm0))-separator constructible

in O(jLj+ n=m+ n0=m0) time.

Proof : It is su�cient to prove the following under the assumption of jLj > (48)2mm0. In

time O(jLj+n=m+n0=m0) one can �nd a sequence of m�1 consecutive columns or rows of T

such that the locations of PAT in T with the left-upper corner in the sequence correspond to

a subset of O(
p
mm0jLj) vertices of GL disconnecting GL into two subgraphs none of which

has more than 5jLj=6 vertices.

For convenience, we shall say that a vertex of GL belongs to a subset S of entries of T if

the left-upper corner of the location of PAT corresponding to this vertex is in S:

7

Group the n columns of T into supercolumns, each consisting ofm�1 consecutive columns

of T (possibly but for the last one). Similarly, group the n0 rows of T into superrows, each

consting of m0 � 1 consecutive rows of T (possibly but for the last one).

Note that the removal of all vertices of GL belonging to a single supercolumn disconnects

the two subgraphs of GL induced by the vertices belonging respectively to the part of T to

the left and to the part of T to the right of the supercolumn. A similar observation holds for

the superrows.

Let Cl be the leftmost supercolumn such that there are at least totally jLj=6 vertices in

Cl and to the left of Cl in T: Symmetrically, let Cr be the rightmost supercolumn such that

there are at least totally jLj=6 vertices in Cr and to the right of Cr in T: Clearly, both Cl and

Cr are well de�ned and Cl cannot lie to the right of Cr: Let BC be the block of consecutive

supercolumns starting from Cl and ending with Cr:

If BC contains a supercolumn di�erent from Cl and Cr with � p4mm0jLj vertices we

are done. Note that otherwise BC contains less than
pjLj=(4mm0) + 2 supercolumns.

Similarly, we de�ne the analogous block BR of superrows. Similarly, if BR contains a

superrow with less than
p
4mm0jLj vertices we are done, and otherwise BR contains less

than
pjLj=(4mm0) + 2 superrows.

To observe that BC or BR always contains a supercolumn (or superrow, respectively)

with � p4mm0jLj vertices, we argue as follows.

Let B be the intersection of BC with BR in T: Note that B has at least jLj=3 vertices. On

the other hand, sinceB has both width< (
pjLj=(4mm0)+2)m0 and height< (

pjLj=(4mm0)+

2)m, it cannot contain jLj=3 vertices if jLj > (48)2mm0. We thus obtain a contradiction.

To �nd the number of vertices in each supercolumn in BC and each superrow in BR;

we search the graph GL: While visiting a vertex v; we identify the supercolumn and the

superrow it belongs to, increasing the counters associated with them by one. It takes O(jLj)

8

time. To �nd the number of vertices to the left and to the right of each supercolumn (or,

below or above each superrow, respectively), we apply pre�x sums. It takes O(n=m+n0=m0)

time.

For simplicity, we put N = jLj+ n=m+ n0=m0 and d = (48)2mm0:

Theorem 5.2 For any k > d, GL has a set of vertices C of size O(jLjpmm0=
p
k) whose

removal from GL leaves no connected component with more than k vertices. Furthermore C can

be found in O(N log jLj) time.

Proof : Initialize C := ;, and construct C as follows.

while there is a connected component H of G�C with more than k vertices do

�nd a separator C 0 of H and set C := C [C 0.

The construction of C may be visualized by means of a tree, whose vertices represent

subgraphs of G (the root represents G) that are encountered during the execution of the

procedure; the leaves correspond to the components of G with at most k vertices. De�ne the

level of a vertex v in the tree as the height of the full subtree rooted in v. Clearly, any two

subgraphs on the same level are vertex-disjoint. By induction it follows that each i-th level

(i � 1) subgraph has at least (1=a)i�1k vertices for some constant a < 1. Thus the number

of i-th level subgraphs is at most ai�1jLj=k. Since k > 1, the number of levels is O(log jLj).

Further, we spend O(N) time at each level, by Lemma 5.1. Hence the above procedure runs

in O(N log jLj) time.

To bound the size of C, let n1; : : : ; n` be the sizes of the subgraphs at some level i � 1. The

total number of vertices added to C by splitting these subgraphs is at most O(
P`

j=1

p
mm0nj).

This number is O(a(i�1)=2jLjpmm0=
p
k), since ` � ai�1jLj=k and

P`
j=1 nj � jLj. Hence

jCj = O(jLjpmm0=
p
k).

9

Theorem 5.3 In O(maxfN log jLj; 2kjLjg) time, we can �nd an independent set I in GL such

that the relative error in the size of I is O((mm0)3=2=
p
k).

Proof : Apply Theorem 5.2 to GL and �nd the set C. In each connected component

of G � C, �nd a maximum independent set by an exhaustive search. Let I be the union

of all such independent sets. Consider any maximum independent set I� in G. Observe

that jI�j =
(jLj=(mm0)), since every vertex in GL has degree O(mm0). Notice that the

restriction of I� to any connected component cannot be larger than the restriction of I to the

same component. Thus, the di�erence in the sizes of I and I� is at most the size of C, which

is O(jLjpmm0=
p
k). Consequently, the relative error in the size of I is (jI�j � jIj)=jI�j =

O((mm0)3=2=
p
k).

To bound the time complexity, observe that the exhaustive search in each component

takes O(k � 2k) time. Thus the search over all components takes time O(2kjLj). Finally, by

Theorem 5.2, C can be found in O(N log jLj) time.

Theorem 5.3 gives a trade-o� between the running time of the algorithm and the quality

of the solution. For small size and constant-size patterns, we have the following result by

taking k = blog log jLjc.

Corollary 5.4 If PAT is of size o((log log jLj)1=3), then a solution to MPM2 of relative error

o(1) can be constructed in O(N log jLj) time.

Corollary 5.5 If PAT is of constant size, then a solution toMPM2 of relative error O(1=
p
log log jLj)

can be constructed in O(N log jLj) time.

10

6 An Approximation Scheme for MPM2

6.1 Basic Technique

The shifting strategy was used by Baker [4] for obtaining polynomial time approximation

schemes (PTAS) for problems restricted to planar graphs, by Hochbaum and Maass [19, 20]

for devising PTAS for certain covering and packing problems in the plane, and by Feder and

Greene [12] for obtaining a PTAS for a certain location problem.

We outline the basic technique by discussing our approximation scheme for MPM2 with

constant size pattern. Without loss of generality, we may assume that the intersection graph

GL of the set L of locations of PAT T is connected. As in the previous section, we divide

T into supercoloumns composed of m � 1 consecutive coloumns of T (except the last one).

For an � > 0, we calculate the smallest integer k such that (k
k+1) � 1 � �. Next, for each

i, 0 � i � k, we disconnect GL into l subgraphs G1; � � �Gl by removing the vertices of GL

corresponding to the locations of L in supercoloums with number congruent to i mod (k+1).

(A location is said to lie in a given subarray if its left-upper corner lies in that subarray). For

each subgraph Gp, 1 � p � l, we �nd an optimal independent set in Gp. The independent set

for this partition is just the union of independent sets for each Gp. By an argument similar

to the shifting lemma in [19], it follows that the iteration in which the partition yields the

largest solution value contains at least (k
k+1) � OPT (GL) vertices, where OPT (GL) denotes

the size of a maximum independent set in GL. (For simplicity, we also denote the cardinality

of a maximum independent set in GL by OPT (GL) .) The algorithm takes O(n) work. It is

easy to see that the algorithm admits an NC implementation. We are now ready to give our

approximation scheme for MPM2: The algorithm is outlined below.

11

Algorithm MAX-MATCH:

� Input: A pattern PAT of constant size m�m0, a text array T of size n�n0 and the

intersection graph GL of the locations of PAT in T:

�1. Find the smallest integer k such that (k
k+1) � 1� �.

2. Divide T into supercolumns of width m� 1

3. For each i, 0 � i � k do

(a) Disconnect GL into ri disjoint subgraphsGi;1 � � �Gi;ri by removing all the vertices

corresponding to locations of PAT in supercolumns with numbers congruent to

i mod (k + 1).

(b) Gi S1�j�ri Gi;j:

(c) Compute an optimal independent set IS(Gi;j) in Gi;j.

(d) IS(Gi) S1�j�ri IS(Gi;j).

4. IS(GL) max0�i�k IS(Gi)

� Output: An independent set in GL with at least (k
k+1) � OPT (GL) vertices.

6.2 Finding an optimal solution in Step 3c

We now discuss how to obtain an optimal solution for the independent set problem in Step 3c

of Algorithm MAX-MATCH:. For each �xed k > 0, the subgraph Gi;j obtained in Step

3a has treewidth � ck, for some constant c > 0. Given this we can use the sequential (or

NC-algorithms) for computing the maximum independent set in treewidth bounded graphs

[7, 28]. Thus the optimal independent set in Step 3c can be found by using O(jLi;jj) work.

Here Li;j denotes the vertex set of the graph Gi;j.

6.3 Performance Guarantee

We next prove that the algorithm given above indeed computes a near optimal independent

set. That is, given any � > 0 the algorithm will compute an independent set whose size is at

12

least (1� �) times that of an optimal independent set.

We �rst prove that of all the di�erent iterations for i, at least one iteration has the prop-

erty that the number of vertices that are not considered in the independent set computation

is a small fraction of an optimal independent set.

Recall that for each i we did not consider the vertices in the subgraphs Gj1 ; Gj2 � � �Gjpi

such that jl = i mod(k + 1), 1 � l � pi. For each i, 0 � i � k, let Si be the set of vertices of

GL which were not considered in the i-th iteration. Let ISopt(Si) denote the vertices in the

set Si which were chosen in the maximum independent set OPT (GL).

Lemma 6.1

max
0�i�k

jOPT (Gi)j � k

(k + 1)
jOPT (GL)j

Proof : First observe that the following equations hold:

0 � i; j � k; i 6= j; Si \ Sj = �

; since di�erent subgraphs are considered in di�erent iteration. From the above set of equa-

tions it follows that

jISopt(S0)j+ jISopt(S1)j+ � � �+ jISopt(Sk)j = jOPT (GL)j

Therefore,

min
0�t�k

jISopt(St)j � jOPT (GL)=(k + 1)j

max
0�i�k

jOPT (Gi)j � jOPT (GL)j � min
0�t�k

jISopt(St)j � k

(k + 1)
jOPT (GL)j

.

Theorem 6.2 jIS(GL)j � (k
k+1) � jOPT (GL)j.

Proof : We consider the iteration when the value of i is such that jOPT (Gi)j � (k
k+1)jOPT (GL)j.

By Lemma 6.1 such an i exists. Fix the iteration i.

13

jOPT (Gi)j =
Pj=r

j=1 jOPT (Gi;j)j

Using the above equations we get that

jIS(GL)j = max0�i�k jIS(Gi)j

= max0�i�k
Pj=r

j=1 jIS(Gi;j)j (By Step 3(b))

� max0�i�k
Pj=r

j=1 jOPT (Gi;j)j (By Step 3(c))

� max0�i�k jOPT (Gi)j (By Step 3(c))

� (k
k+1) � jOPT (GL)j (By Lemma 6.1)

The time required for each iteration of the For loop is �j=ri
j=1 O(jLi;jj) = O(jLj). Hence

the total running time of our algorithm is �i=k
i=0O(jLj)+O(n=m) = O(jLj)+O(n=m) (in case

of the NC-algorithm the total amount of work is O(jLj)+O(n=m).) Moreover, the algorithm

has a performance guarantee of (k + 1)=k.

7 Extensions

We brie
y outline the possible extensions of our ideas presented in the previous sections.

Higher Dimensional Matching Problems

Our approximation algorithms for MPM2 directly extend to solve the problems MPMd for

any �xed d > 2. This can be seen by oberserving the following. For each �xed d > 0

there is an r > 0 such that, the intersection graph associated with the problem MPMd is

r-claw free. Also note that the d-dimensional geometric graphs have also good separator

properties [26, 11]. Finally, note that the shifting strategy can be easily extended to apply

to d-dimensional rectangles. The performance guarantee of the algorithm based on shifting

14

strategy for solving MPMd is (k+1k)d�1.

Multiple Matchings

Idury and Sch�a�er [21] consider a variant of the classical matching problem in which we

are given a set of patterns instead of single pattern. Our results extend to handle the opti-

mization version of the multiple pattern matching problem studied in [21]. If the number of

patterns and the size of each pattern is �xed, our approximation schemes can be extended

to obtain approximation schemes for the generalization. To see this, note that although the

rectangle graph induced now does not have equisized rectangles, we can subdivide the plane

with respect to the largest rectangle. Furthermore, since the rectangles are of �xed size, for

each � > 0, the treewidth of the subgraphs obtained as a result of decomposition is still a

constant. With these two observations in mind the extension is fairly straight forward.

Non-Rectangular shapes

As pointed out in Amir and Farach [1], several practical applications require us to match

non-rectangular shapes. Using ideas similar to those outlined for the Multiple matching case,

the approximation schemes for MPM2 can also be extended to the case when we have �xed

sized patterns that are non-rectangular, e.g., an L-shaped patterns.

Allowing Mismatches

Amir and Farach [1] also study the two dimensional pattern matching problem in which we

are allowed certain number of mismatches. Our approximation algorithms extend to �nding

a maximum number of non-overlapping patterns such that no more than k mismatches are

15

allowed per matched location.

Acknowledgements: We thank Harry Hunt III, S.S. Ravi (SUNY- Albany) and Pat

Kelly (Los Alamos National Laboratory) for fruitful discussions during the course of writing

this paper. We also thank Jop Sibeyn for bringing reference [26] to our attention.

References

[1] A. Amir, and M. Farach, \E�cient 2-dimensional Approximate Matching of Non-Rectangular

Figures," Proc. 2nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1992, pp.

212-223.

[2] A. Amir, G. Benson, G. Benson and M. Farach. An Alphabet-independent Approach to Two-

Dimensional Matching. Proc. 24th ACM Symposium on Theory of Computing, 1992, pp. 59-68.

Journal version to appear in SIAM J. Computing.

[3] T. P. Baker. A technique for extending rapid exact-match string matching to arrays of more

than one dimension. SIAM J. Computing, No. 7, 1978, pp. 533-541.

[4] B.S. Baker. \Approximation Algorithms for NP-complete Problems on Planar Graphs," 24th

IEEE Symposium on Foundations of Computer Science (FOCS), 1983, pp 265-273. (Journal

version in J. ACM, Vol. 41, No. 1, 1994, pp. 153-180.)

[5] B.S. Baker, \A Theory of Parameterized Pattern Matching: Algorithms and Applications," Proc.

25th ACM Symposium on Theory of Computing, 1993, pp. 71-80. Journal version to appear in

Journal of Computer and System Sciences (JCSS).

[6] R. S. Bird. \Two-dimensional pattern matching," Information Processing Letters No. 6, 1977,

pp. 168-170.

[7] H. L. Bodlaender, \Dynamic programming on graphs of bounded treewidth," Proc. 15th Inter-

national Colloquium on Automata Languages and Programming (ICALP), LNCS Vol. 317, 1988,

pp. 105-118.

[8] \CANDID Project," Los Alamos National Laboratory, 1993.

[9] M. Crochemore and W. Rytter. Text Algorithms, Oxford University Press, New York, 1994.

16

[10] A. Czumaj, Z. Galil, L. Gasieniec, K. Park and W. Plandowski, \Work-Time-Optimal Parallel

Algorithms for String Problems," 27th ACM Symposium on Theory Of Computing (STOC), pp.

713-722, 1995.

[11] D. Eppstein, G.L. Miller, S.H. Teng. \A Deterministic Linear Time Algorithm for Geometric

Separators and its Application," 9th ACM Symposium on Computational Geometry, pp 99-108,

1993.

[12] T. Feder and D. Greene. \Optimal Algorithms for Approximate Clustering", 20th ACM Sym-

posium on Theory Of Computing (STOC), pp. 434-444, 1988.

[13] R.J. Fowler, M.S. Paterson and S.L. Tanimoto. \Optimal Packing and Covering in the Plane

are NP-Complete," Information Processing Letters, Vol 12, No.3, June 1981, pp. 133-137.

[14] G.H. Gonnet and R. Baeza Yates, Handbook of Algorithms and Data Structures, Addison-Wesley,

Reading, MA, 1991.

[15] F. Gavril, \The intersection graphs of subtrees in trees are exactly the chordal graphs," J.

Combin. Theory B, 16, 1974, pp. 47-56.

[16] F. Gavril, \Algorithms for minimum coloring, maximum clique, minimum covering by cliques,

and maximum independent set of a chordal graph," SIAM J. Computing, 1, 1972, pp. 180-187.

[17] M.M. Halld�orsson, \Approximating Discrete Collections via Local Improvement," Proc. 6th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1995, pp. 160-169

[18] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1979.

[19] D.S. Hochbaum and W. Maass, \Approximation Schemes for Covering and Packing Problems

in Image Processing and VLSI," J. ACM, Vol 32,No. 1, 1985, pp 130-136.

[20] D.S. Hochbaum and W. Maass, \Fast Approximation Algorithms for a Nonconvex Covering

Problem," Journal of Algorithms, Vol. 8, 1987, pp. 305-323.

[21] R. Idury and A. Sch�a�er, \Multiple Matching of Rectangular Figures," Proc. 25th ACM Sym-

posium on Theory of Computing, 1993, pp. 81-89.

[22] P.M. Kelly, T.M. Cannon, and D.R. Hush, \Query by image example: the CANDID approach,"

SPIE Vol. 2420 Storage and Retrieval for Image and Video Databases III, pages 238-248, 1995.

17

[23] P.M. Kelly and T.M. Cannon, \CANDID: Comparison Algorithm for Navigating Digital Image

Databases," In Proc. of the 7th International Working Conference on Scienti�c and Statistical

Database Management, pages 252-258. Charlottesville, VA, Sept., 1994.

[24] S. R. Kosaraju, \Faster Algorithms for the Construction of Parameterized Su�x Trees," 36th

IEEE Symposium on Foundations of Computer Science (FOCS), 1995, pp 631-637.

[25] R. J. Lipton and R. E. Tarjan, \Applications of a planar separator theorem," SIAM J. Com-

puting, 9, 1980, pp. 615-627.

[26] G.L. Miller, S.-H. Teng and S.A. Vavasis, \A Uni�ed Geometric Approach to Graph Separators,"

Proc. of the 32nd IEEE Symposium on Foundations of Computer Science, 1991, pp. 538-547.

[27] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer Verlag, New York, 1985.

[28] N. Robertson and P. Seymour, \Graph Minors II. Algorithmic aspects of tree-width," J. Algo-

rithms, No. 7 (1986), 309-322.

[29] D. J. Rose, R. E. Tarjan and G. S. Lueker, \Algorithmic aspects of vertex elimination on graphs,"

SIAM J. Computing, 5, 1976, pp. 266-283.

18

